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Nonstationary flat-parallel pressure flow of viscous liquid under arbitrary initial and boundary 
conditions are reviewed. 
Regularities of instantaneous speed distribution on the effective cross-section for a general case when 
initial speed distribution and pressure difference are given in form of arbitrary function are obtained. 
The obtained regularities of the instantaneous speeds allow to calculate momentum and kinetic energy 
factors, power losses in the unbalanced flow, determine the regularity of the profile speed variation 
(deformation) in time, obtain the character of change of momentum β and kinetic energy  factors. 
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Research of nonstationary processes in pressure systems is important to properly understand 
their essence and select design diagrams in constructing various systems and devices widely used 
in the industry. Plane-parallel model of the pressure flow is essential for studying the flow 
pattern characteristic to a lot of systems and pressure lines of the automated complex devices 
[1,2]. 
 
Let’s review the plane-parallel pressure flow of viscous fluid between two unlimited parallel 
fixed walls the distance between which is 2h (figure). Let’s review the fluid flow in Cartesian 
coordinate system oxyz, commencement of which will be placed in a centre between the plates, 
and direct the coordinate x along the flow axis. Assuming that fluid flows just along the axis ox,  
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      Figure. 
 
Without considering initial area or the area of flow generation where hydromechanic parameters 
change again along the flow, let’s review conventionalized flow area where hydraulic parameters 
change just along the effective cross-section. Under such assumptions, Navier- Stokes equations 
and continuities, without taking into the account the body forces, will have the following form: 
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It is obvious from the last two equations that pressure in the effective cross-section does not 
depend on the coordinates and depends just on time, i.e.  

                                                tf
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Assuming that distribution of speeds along the effective cross-section at an initial time instant 
has an arbitrary shape depending on coordinate y, i.e.  yu x  , at t=0 the research of the 
nonstationary plane-parallel pressure flow leads to the integration of differential equation 
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In following initial and boundary conditions: 
  ,0t,yux   in ;0t,hy        (6) 

   yt,yux   in  .hyh,0t         (7) 

 
Let’s introduce non-dimensional coordinates and parameters 
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Then the equation (1) will convert in a following way 
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In simplifying the last equation, will obtain: 
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where 


 hu
Re  - Reynolds number. 

Let’s also present the initial and boundary conditions in non-dimensional form: 
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Dropping zero indexes in non-dimensional values will obtain the boundary value problem. Let’s 
integrate the differential equation 
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under the following conditions: 
 

  ,0t,yu   in   ;0t,1y         (11) 

   yt,yu    in   .1y1,0t       (12) 

In stationary flow , distribution of the speeds along the effective cross-section has the form of 
square parabola 
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Coefficients of momentum β and maldistribution of speeds  will be written in a following form: 

                                                           

 
;2.1

3

pRe

dyy1
2

pRe

2

1
2

1

1

22









 







 







                                     (15) 

                                                             

 
35

54

3

pRe

dyy1
2

pRe

2

1
3

1

1

32
.3









 


















 





  .                       (16) 

 3



A.Sarukhanyan,...                                                                                Energyonline №2(3), 2010 
 

Solution of the equation (10) under the conditions (11), (12) will be sought in form of a sum [4] 
                                                                  t,yut,yut,yu 21x   ,                                    (17) 
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Under heterogeneous edge conditions: 
  ,0t,yu1    in ;0t,1y                           (19) 
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Function  includes speed deviation from initial distribution  t,yu1   t,yu2  along the effective 
cross-section and deviation from pressure differential. Solution of the equation (18) will be 
sought in form of a sum of infinite series: 
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where Сk – constant coefficients the values of which are determined according to the initial 
condition of the problem (20). Having  
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for determining coefficient values, let’s multiply both parts of the equalities (25) by kC
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will obtain 
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Solution of the heterogeneous equation (21) will be sought in form of a sum according to the 
eigenfunction of the problems, i.e.  
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where  tbk  - variable coefficient determined under the initial conditions of the problem (23), 
i.e.  
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Integrating the last expression, will obtain: 
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following to which the coefficients  tbk  are calculated from the linear differential equation 
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Solution of the equation (34) will be: 
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So, in the plane-parallel nonstationary laminar flow in the arbitrary distribution of the speeds and 
in the pressure differential, instantaneous speeds along the effective scrods-section are 
distributed according to the law 
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It should be noted, that the obtained solution applies to the general case of the problem from 
where it is possible to get specific solutions of a lot of practical problems. 
 
Shearing stresses in laminar flow are specified according to Newton law [5,6] 
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according to which the distribution of the shearing stresses along the effective cross-section in 
the nonstationary plane-parallel flow will be: 
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Average instantaneous speed of the effective cross-section: 
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Regularity of flow quantity coefficient change is specified according to the equations (37) and 
(40). Will obtain: 
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For calculating the integral in numerator, let’s apply Percival equality properties [3], which is 
fair for orthogonal function system. Therefore, let’s bring the system of eigenfunctions of the 
problem to normalized orthogonal system. For these purposes, will re-write the equation (37) in 
form of: 
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Condition of the orthogonality of the function system 
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Considering the equality (44), will re-write the series (43) in form of: 
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according to which the Percival equality is obtained: 
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substituting the coefficient value  kA t  in the equation (46), will obtain: 
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Thus, for the quantity coefficient of flow will eventually obtain: 
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where – average instantaneous speed of the effective cross-section. V
 
Coefficient of maldistribution of the instantaneous speeds 
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According to formulas (48) and (49), β=1, α=1 in t=0 β→1,2, 
35

54
a   in t→∞, which corresponds 

to steady-state condition. 
 
Conclusion 
 
The results of the performed researches allow to conclude the following: 

1. Regularity of the instantaneous speed distribution along the effective cross-section in the 
initial arbitrary distribution of speeds and in pressure differential allowing to calculate 
similar regularities in any practical problems relating to the automated system devices 
and pressure lines as well as lubricating systems for which basically the models of plane-
parallel pressure flow is acceptable is obtained. 

2. Regularity of the speed profile change (deformation) by time is obtained. 
3. Regularity of average speed change is obtained. 
4. Nature of change of quantity coefficients of flow  and kinetic energy   is specified. 
5. Head losses complying to the nonstationary flow are determined. 

 
 

R E F E R E N C E S  
 
1. Громека И.С. К теории движения жидкости в узких цилиндрических трубах. М.:изд-во АН 

СССР. 1952. 

2. Лойцянский Л.Г. Механика жидкости и газа. М.:Наука. 1973. 

3. Бейтмен Г., Эрдейн А. Высшие трансцендентные функции. Изд. 2-е. М.:Наука. 1974. 

4. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: 1999. 

5. Слезкин Н.А. Динамика вязкой несжимаемой жидкости. М.: 1955. 

6. Тарг С.М. Основные задачи теории ламинарных течений. М.:Л.: 1951. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
Arestak SARUKHANYAN, Doctor of Technical Science, Associate Professor, 
Ani MANUKYAN, Chief Specialist  
State University of Architecture and Construction of Erevan 
E-mail: ani_manukyan@yahoo.com 
 
 


