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ABOUT ESTIMATION OF EROSION AND REFORMATION OF BANK 

VAULTS OF GROUND CHANALS AND CANALS 
 

SH. GAGOSHIDZE, T. LORDKIPANIDZE 
 

Approximation theory of the motion of the alongshore wave in a canal communicting with sea is 
reviwed and a method for estimating deformability of its bank vaults is drafted. One of the most 
characeristic features of the alongshore waves is an increase of their height close to its bank line. This 
feature in relief is reflected in an accurate solution of Stokes yet relating to just the waves on the bank 
vaults infinitely going deep into the sea. For the canals with finite depth and closed contour (in 
particular, for trapeziod canals) the method of interfacing the solutions of the wave equations written 
in cylindrical and Cartesian rectangular coordinates respectively for the areas confined with the bank 
vaults and horizontal bottom of the canal is used. 
 
Key words: Ground beds, slope reformation, alongshore waves, closed loop, interfacing method, 
trapezoid canal. 
 

Introduction 
The waves breaking into the river outlets from the sea side as well as wind and ship waves in 
rather narrow, elongated basins and canals predominantely have an alongshore direction. The 
most characteristic for such waves is an increase of their height close to the bank line or the 
opposite, decrease of an amplitude settled at the bank towards large depths. This feature of the 
alongshore waves is reflected in three accurate but private solutions belonging to Stokes, Kelland 
and McDonald [1,2]. Stokes considered the transmission of the short waves of the alongshore 
vault with an arbitrary dip however infinitely going deep into the sea. Two accurate solutions for 
the waves on stationary water, in the canals with triangular cross-section against the board 
dipping at vertical line respectively at 450 and 600 belong to Kelland and McDonald. It is clear 
that the absence of accurate general solutions for progressive waves in triangular canal with 
arbitrary dipping slopes (not to mention the canals with trapezoid cross-section) is explained by 
mathematic complications. 
 
Taking into the account huge practical importance of the problem of studying the wave influence 
on the bank slopes of the canals and riverbeds, basic results of approximate theory of the 
transmission of the alongshore waves superpositioned on the surface of stationary water flow in 
the trapezoid canal with arbitrary dipping bank slopes are briefly given below [3]. Usage of these 
results is demonstrated on the example of estimation of the stability and deformation of the bank 
vault of trapezoid ground bed. 
 

1. Approximate Theory of the Alongshore Waves in the Canal 
Using standard ways of coordinate transformation, it is easy to get convinced that the well-
known equations and boundary conditions of wave disturbances superpositioned on uniform 
flow and recorded in Cartesian rectangular coordinates [1,4], in cylindrical coordinates 
illustrated on figure 1, get the following form: 
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where - velocity potential of the wave disturbances; h0 – maximum water depth in the trapezoid 

canal; - angle of dip of the bank vault at vertical line (axis z) passing through its foundation; r 

– radius-vector acting within the sector confined with e axis z and the bank vault; U0 – stationary 
flow rate in the canal (complying with axis x); marks “

0

 ” are taken respectively in right and left 
triangular canal sectors. Equation (1) represents Laplace (continuity) equation written in 
cylindrical coordinates; (2) is linear dynamic boundary condition executable at the level of 
undisturbed free water surface; and (3) is the condition of impermeability of the canal boards. 
 

 
  
 
 Figure 1. Design Diagram of the Alongshore Waves in Trapezoid Canal 
 
For approximate solution of problem (1)-(3), let’s use Kantorovich method [5] representing the 
potential of the wave disturbance rate in form of the product of function 

)kxt (i exp )(F)r(  f                         (4) 

and chosen as a base function 
     )krcosh()r( f                                 (5) 
in (4) i – imaginary unit;  - frequency of the wave disturbances; - period;  /2   /2k – 
wave number;  – length of the alongshore wave; marks " " correspond with the wave 
transmission opposite and towards the flow direction. 
 
In accordance with Kantorovich method, putting designations (5) and (4) in (1) and conducting 
Kalerkin averaging method (1) procedure along the entire turndown r from 0 to 00 cos/h  , we 

obtain ordinary differential equation for determining the function )(F  : 
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Solution of this equation considering designation (4) and boundary condition (3), gets the 
following form: 

)(mcosC)(F 0  ,                 (7) 
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where C – arbitrary constant which is subject to determination or within the rectangular canal 
part (particularly, over the point O provided on figure 1.) or along the bank line (i.e. over the 
point B). 
 
Following values are identified through m: 
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Configuration of the wave surface and direction orthogonal to the direction of the alongshore 
waves depends on the above values. In particular, depending on m, crests and troughs of the 
alongshore waves to the transverse direction of the canal can be solid or may form a chain of 
standing waves with nodal curves parallel to the bank line. Number of these nodal curves is 
specified by alternation of function F() within the bank vault and it equals to integer part of 
number n calculated according to formula: 
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where  expression in radians. 0
 
In case of n<1 (i.e. n=0) we are dealing with commensurable and longer alongshore waves 
compared to the canal depth and width the crests and toughs of which, not intersecting the level 
of undisturbed water surface, occupy the total canal width. 
 
In case of n 1 (i.e. in n=1;2...) the crests and toughs of the alongshore (shorter) waves form the 
above mentioned wave surface with stationary nodal curves to the transverse direction of the 
canal (which is illustrated on figure 1). 
 
Limiting length of the alongshore wave according to one case changes into the other is 
determined by equality 
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* cos)4/5,0/(h2   .                                    (10) 

Basic complexity of the reviewed problem is to maintain dynamic boundary condition (2) on free 
flow surface. Without going into the details of the assumptions obtained in [3], will note, that 
analysis of limit behavior of the dynamic boundary condition (2) in case of  (n=0) leads to 
approximate dispersion relation 
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0  ,                               (11) 

which in the second case, i.e. in case of (or n 1), turns into Stokes dispersion relation for 
short edge waves [1,2] 

 
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2

0 cosgkkU  .                                                     (12) 
 
In case of n=0, the arbitrary constant C should be normalized through amplitude a0 specified 
over the bottom of the bank vault with the requirement that the three-dimensional solutions in the 
triangular canal part smoothly grow into the well-known solutions for two-dimensional waves in 
the rectangular canal part. Then, considering the designations (4), (5) and (7) for the velocity 
potential at the right canal bank will obtain 
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With the same requirement, in case of large n, it is reasonable to normalize constant C (although 
this is not principal) through the amplitude a' specified along the bank line (described in accepted 
coordinates by equation ). Then, for  will obtain 00 cos/hr 
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In all cases, connection between amplitudes a' and a0 is expressed by dependence 
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according to which a' is always more than a0 and significantly exceeds it in large kh0, i.e. in case 
of presence of the short alongshore waves. At the same time, the alongshore waves moisten the 
bank slope to the level approximately determined by equality 01 /cosa'h  (figure 1). 

 
In future, for estimating the deformation of the ground channels, we will need the value of 
velocity and pressure components of the alongshore waves directly within the plane of the bank 
slope on which r gets the value 00 cos/)hh(r  , where h – variable depth of flow over the 
bank vault (figure 1). Given the above mentioned solutions, will have: 
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g2

U
)x kt sin(A h p

2
0 ,                  (17) 

where u and - components of the speed of motion of water particles at arbitrary plane point of 
the bank vault directed towards this plane respectively along the bank line and orthogonal to it; p 
– pressure; - specific gravity of water; upper marks answer for the wave direction opposite and 
the lower ones – towards the flow of the main flow in the canal with the velocity U0; A and G – 
geometric and frequency components of variable wave amplitude calculated when n<1 according 
to dependences 
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and when n 1 – according to Stokes dependance 
                                   )nexp(-kh/si'aA 0 ;                     (20)         

             2
1

0 )sin/gk(G  ,                                                    (21) 
 
where  – angle between undisturbed water surface and bank vault plane. 0
 
These dependences can be the basis for estimating the stability and deformability of unfixed and  
fixed beds of rivers and canals that are prone to wave influence to the alongshore direction. 
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2. Design Dependences for Evaluating the Stability and Deformability of the Canal 
Bank Vaults 

 
Let’s demonstrate the above mentioned on private example of the estimation of the stability and 
deformability of the vaults of trapezoid canal communicating with the sea. The above relations 
allow to review static stability of soil particles or elements of the protective measures of the 
canal boards in three directions which are most dangerous in terms of erosion: 
 

a) upwards, towards the direction normal to the bank vault plane when the wave bottom 
passes over the element laying on the slope, and a hydraulic uplift formed by averaged 
(zero) water level in the canal affects from below; 

b) towards the flow direction conditioned by the flow of the soil particles or stones of the 
protecting fill by both the main flow and the alongshore waves; 

c) downwards, towards the slope plane, perpendicular to the bank line direction conditioned 
by three-dimensional structure of the alongshore waves. 

 
Consideration of static stability of the soil particles laying on the bank vault according to these 
three directions respectively leads to the following equations: 
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where d – soil particle size reduced to cube; - soil specific gravity in suspension; 

 and   –specific gravity and density of water; f – friction coefficient ( ); c0 – coefficient 

of soil particle coalescence; 

)( ss  

0.7f 
C – coefficient of head resistance ( 05.1C   [86]); A and G – 

constituent wave amplitudes calculated according to the formulas (18)-(19) or (20)-(21) 
depending on the value of n number determined according to the equality (9); )kxt( 
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 – 
wave phase passing over the particle. In accordance with (22), the most dangerous value of the 
phase  for the particle displacement corresponds with the passage of the wave bottom 
over the particle; and in accordance with (23) – passage of the wave crest ( ), if the wave 
direction coincides with the direction of the stationary flow or with the passage of the wave crest 
( ) otherwise. In (24) experimental value of the wave phase  depends on the velocity 
U0 and the wave amplitude AG. In the first approximation, it is possible to accept . 
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Determining size d of extremely stable soil particles towards the above three directions, we 
chose the largest one as a design quantity. 
 
It should be noted, that together with increasing the flow depth h at the bank vault ( 0hh0  ), 

eroding ability of the alongshore waves decreases significantly. For instance, assuming that the 
short waves are transmitted along the canal, and proceeding from the relations (22) and (20), 
then such decrease occurs according to exponential law. From these relations, the limiting flow 
depth ( ) in which the force of the hydraulic uplift is balanced by the force of the particle of 

incoherent soil (c0=0) laying on the bank vault equals to 
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where  – specified or defined amplitude of the alongshore wave under formula (14); – wave 
length; – initial (design) value of the bank slope coefficient. 

'a
m 00 ctg

 
Relation (25) can be the basis for designing differential equation of the contour line of the eroded 
bank vault above the point defined by the depth hw. For this, let’s shift parallel coordinate system 
illustrated on figure 1 to the point under which the water depth hw and in (25) replace hw and m0 

respectively by variables h=f(y) and 
dh

dy
m'

0  . Let’s accept that during erosion, the wave 

amplitude and length remain the same and the value 
2'

0m1 gets an approximate 

value '
0

2'
0 mm1  (considering that usually the slope coefficient  at the eroded bank is 

several times more than one and hence, ). Than, taking into the account these 

assumptions, (25) turns to the linear differential equation 
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Solution (26) in observing the boundary condition h = hw when y=0 determines the water depth 
over the eroded vault or the outline of the deformated bank vault, which is the same. 
 
Calculation results according to formulas (25) and (26) of the reformation of one really acting 
ground channel communicating with the marine harbor and functioning for transporting barge 
and other port vessels are provided on the below given figure 2. Within two years since putting 
the wave canal formed by the barges into the operation caused strong distortion of its original 
trapezoid cross-section eroding and sliding the banks by more than 8 m. The canal vaults became 
significantly gentle and due to soil silting withdrawn from the canal banks their bottom level 
elevated threatening navigation. 
 

 

Figure 2. Calculation Results of Deformation of the Bank Vault of the Canal: 
1 – design contour of the bank vault; 2 – contour of the eroded vault; 3 – undisturbed flow surface in the 
canal; 4 – original bottom of the canal; 5 – soil deposited on the canal bottom; hw – design water depth on 
the vault; e – transverse coordinate calculated from vertical line where hw = 1,28m;  h – water depth on 

the eroded vault; - coefficient of slope of the eroded bank vault. '
0m
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Calculations were run with the following basic data: initial (design) value of the coefficient of 
slope =3,5; average size of soil grains of the canal vaults specific 

gravity of water and soil particles under suspension
00 ctgm  ;м4105,0d 

1  t/m3 and = 1,6 t/m3; length and 

amplitude of the alongshore wave = 4m  and = 0,35m. Calculation results appeared to be in 
good compliance with the data of in-situ observations on the erosion of the coasts if sea port 
canals. 
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