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ABOUT SOME ISSUES OF ANALYSIS OF EQUATIONS OF DYNAMICS 
OF COMPOSITE WATER-SOIL MIXTURE 

 
L. MINKIN 

 
Equation system of water-soil mixture motion proposed by Professor T. G. Voynich-Sianozhenski is 
reviewed. Some solutions of the equation system of linear and nonlinear  statements elaborated by the 
author are provided. Methods of reducing them to Burgers equation system and then to general 
positions of heat conductivity are presented. 
 
Calculations for estimating wave parameters according to various methods are performed. The first 
method includes numeric solution of the equation system of the motion according to the method of 
characteristics earlier worked out by the author, the second – approximate solution of the system 
according to Dressler model, the third is based on application of perturbation method and finally, the 
forth uses both reduction of basic equations to Burgers equation and then, as a consequence, to the 
equation of heat conductivity and the calculations of ready relations provided in the book by James 
Aussem “linear and nonlinear waves” (1977). 
 
Key words: water-soil media, flow velocity, tractional load, system stability, bottom waves, 
composite media. 
 
Equations of water-soil composite media (mixture of water and soil) motion are proposed by T. 
G. Voynich-Sianozhenski [1] and have the following form: 
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where  - discharge; W - average velocity; Q  ,,,, Bih  geometric characteristics of mixture 
flow;  ,,, fk,,s physical parameters of water-soil media [2]. 
 
First of all, such a model is aimed at describing behavior of the bottom drift, however it is also 
suitable for estimating the motion of viscous fluid and the behavior of sand and mixtures of 
viscous fluid and sand in various concentrations. 
 
Among practical problems that may be reviewed based on a model equation is the problem on 
the motion of the tractional load layer, the issues of describing the behavior of soil that is close to 
bridge supports, erosions and deformations at the river bank and sea coast zones, etc. 
 
In other words the model is applied when from physical or other viewpoint, the stylization of a 
specific problem relating to the description of the water-soil mixture behavior within the one-
dimensional equations is admitted. 
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Large range of the problems that were reviewed and may be reviewed in future, as we believe, 
demonstrates the interest to study particularly the equations of model. 
 
In the first section of the work, basic results – solution of the equation system (1) for simpler 
cases (in terms of practical application) mainly obtained based on simplified linearized equation 
are provided. 
 
The second section of the works reviews nonlinear equation systems (1). 
 
It is shown that the nonlinear equation system of the model is similar to Burgers equation with 
variable coefficients, i.e. can be considered as modified Burgers equation. A model of 
approximate resolution of the system of the respective equations is drafted here as well. 
 
Some practical results of the analysis of the nonlinear equations for some cases are provided in 
[2,3]. 
 
First of all, for stationary longitudinal uniform motion of the water-soil mixture layer (tractional 
load) with the thickness h , from (1) will obtain 
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Using Chezy formula for tangential stresses at water and soil boundary accepted in hydraulics 
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where - velocity of the water-soil layer; W V velocity of water flow, will obtain minimum  
value of the flow velocity under which mass motion of drifts (layer thickness with one average 
particle diameter ) is initiated. dh 
 
For researching the conditions of the stability of stationary longitudinal uniform motion of the 
layer of tractional load with thickness h in relation with small perturbations, the following linear 
equations was obtained 
 

  0
x

P
t

P
x

P
xt

P
t

432

2

2

2

12

2





















                           (4) 

 
where, 

                           











































2
00w

0

000w

0

02
00w000w

2
0

2
H

2
H0

4

2
H0

00w
3

2
w

2
02

002

001

)WV(g
H

)WV(gV3

3H

gh
)WV()WV(gW2)cosks(C

Ch

1
P

;
Ch

)WV(g2
P

;cos
)f21((

f21

gh
WP

;W2P

 

 2



L.Minkin                                                                                              Energyonline №2(3), 2010 
 

Index 0 carries respective value to the stationary longitudinal uniform motion. 
 
Solutions of the equation (4) are stable with respect to small perturbations when the average flow 
velocity satisfies an inequality , where V 2VV 
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An essence of the obtained result is that in water flow velocities , that are more than the 
first critical but less than the second critical 

1VV 

2VV  , the stationary longitudinal uniform motion 
is unstable, i.e. the wave - ridge motion of the tractional load occurs. In the ridge 
drawdown i.e. return to non-wave carpet motion of drifts occurs. 

2VV 

 
Solution of the nonlinear equation system (1) for the flow velocities within the range of 

,, i.e. determination of the parameters of the wave motion of the bottom layer were 
performed in several ways. 

12 VVV 

 
Numerical solution of the equation system (1) by means of the method of characteristics is 
described in detail in [2]. 
 
Approximate solution of the system (1) based on  Dressler – Mkhitaryan diagram allowed to 
estimate geometric parameters (maximum height, length, steepness) for quasisteady motion of 
the bottom waves. 
 
It was obtained that the wave height h is such that 21 hhh  . 
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c – velocity of quasisteady motion of the bottom waves; - respective minimum and 
maximum height of the bottom layers. 

21 ,hh

 
Let’s show basic segments of the approximate solution of the system (1) which is based on 
application of small parameter method. 
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Self-similar transformation converts the equation system (1) into the following system 
of ordinary differential equations: 
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Here,   - coefficient of effective dynamic viscosity;  )s1( 
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By substituting from (7) by (6) and conducting simplification, will obtain W
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Solution of the linear equation (8) was obtained by small parameter method according to   
degrees in form of  
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Equating the coefficients in equal   degrees from the equation (8) will obtain the following 
relations (let’s restrict with the first two members of order (9)): 
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Relation (10) can be re-written in a following way: 
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Quasisteady bottom waves which we are interested in are feasible just in case in the equation 
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one root is real , and the other two are complex conjugate 1hh ih   . 
 
Integral of the equation (12) can be written in a following way: 
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from where the relevant expressions for  and are found. 0h 1h
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Solutions obtained based on (15) quite well comply with the available data of the experiments 
with caproic chips [3]. 
 
In the following section it is determined that the equation system (1) is reduced to one of the 
most famous type of nonlinear equations – to Burgers equation with the variable coefficients. 
 
For this, let’s write the equation system (1) in form of: 
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Then, according to the model of transformed nonlinear equations developed in [4], let’s re-write 
the equation system (16) in a matrix form 
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Here and in future, index 0 carries relevant value to the stationary motion. 
 
Equation (19) is solved by the method of consequent approximations. 
 
In zero approximation, will have 
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Assuming that k is small (approximation of long waves) and using the method of consequent 
approximations according to the degrees of parameter k of small parameter characterizing the 
degree of system nonlinearity 
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Procedure of the reduction of the system (16) to the equation (22) is in detail described in [5]. 
The symbols used in (22) are also described there in detail. 
 
By means of replacing )exp(),(u   the equation (3) is adduced to modified Burgers 
equation with constant coefficients. 
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It should be noted, that constant coefficient values in the equations (22), (23) are taken based on 
respective parameters in longitudinal uniform motion. 
 
For two important private cases 1) when coefficient  is neglible and 2) high profiles of the 
variable  are considered (asymptotic behavior of the solution when ), the equations 
(22), (23) are reduced to the heat conductivity equation. 
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I.e. into standard heat conductivity equation. 
 
Note, that for the problem involved the reduction of initial equation system (1) to Burgers 
equation and then to the linear equation – the equation of heat conductivity – allows to carry the 
existing solutions of this equation. 
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The most important for such cases is description of the stationary waves, N – waves, single 
hump type waves and discontinuous solutions. At the same time, in accordance with [6], the 
solutions for fluids with various Reynolds numbers were reviewed. 
 
Calculations for estimating the wave parameters with various methods were carried out. 
 
First method – numeric solution of the equation system (1) with the method of characteristics 
provided in [2], second model is based on approximate solutions of the system (1) with 
Dressler’s model, i.e. based on the relations for identifying the bottom wave parameters again 
provided in detail in [2]. 
 
Solution of the system (1) on the basis of the small parameter method was an essence for the 
third method. And, finally, the forth method used as a basis the reduction of basic equations of 
the problem in relevant cases to Burgers equation and respectively to heat conductivity equation 
and calculations with ready relations [6]. 
 
Comparison of the obtained calculation results for quasistationary waves (lengths, heights and 
profiles of the bottom waves for two model cases) showed, that accepted coincidence for the first 
two models the difference in non-dimensional parameter z =h/  did not exceed 35%. 
 
The third and forth models gave a bit larger discrepancy. 
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