SELECTION OF OPTIMAL INVESTMENT PORTFOLIO IN ORDER TO PROVIDE GEORGIAN ENERGY SAFETY WITHIN THE MEDIUM TERM

D. JAPARIDZE, Z. GACHECHILADZE, T. MAGRADZE

Anticipated rates of deficit power in autumn-winter period are specified based on comparative analysis of expected medium term parameters of power generation and power demand in Georgia and the ways to reduce the deficit by increasing power generated as a result of putting the power plants into the operation within the established terms defined under the seleted optimal investment portfolio are shown.

For increasing local potential to satisfy Georgian power demand by generating power, method for selecting the optimal investment portfolio for providing Georgian energy safety within the medium term is elaborated based on which the optimal portfolio for the investments to be implemented in Georgian energy section was selected.

Key words: energy resources, investment portfolio, estimated deficit, integrity of sets.

Economic crisis in the world and intense increase of prices on energy resources make any country face the necessity of implementing effective measures and use as much of its own energy resources as possible for achieving energy independence. As analysis shows [4,10], according to the energy balance of Georgia, almost 65% of the demand on the energy resources is satisfied by import.

Fulfillment of the set objective is possible by selecting the optimal investment portfolio in energy sector based on deep scientific analysis. Pre-condition of the portfolio selection should be determination of expected medium term parameters, identification of power capacities required for providing the energy safety according to estimated parameters and elaboration of the medium term complex programme for exploiting the capacities according to the availability of local renewable resources.

Problems relating to the medium term forecast of the energy safety and selection of the optimal investment portfolio are not properly studied in Georgia. There has not been scientifically justified method for the selection of the optimal investment portfolio in the energy sector elaborated. Large volume of research works [1-3, 4, 6-8] were conducted by the authors of this report in order to eliminate this problem.

As a result of performed researches the medium term forecast of the power demand in Georgia (2011-2020) at 95% reliability probability was carried out based on actual power balance of the recent years [1, 8, 11] taking into the account the factors affecting the power demand in Georgia [2]. Upper and lower limits of the forecast were determined. Calculation results are provided in table 1.

									Т	able 1
Year	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Base line	9,1077	9,2326	9,6144	10,049	10,125	10,335	10,8253	11,0395	11,09	11,503
Upper limit	10,465	10,793	11,108	11,884	12,12	12,706	13,179	13,569	14,178	14,494
Lower limit	7,7499	7,6722	8,1214	8,2147	8,13	7,965	8,018	8,51	8,001	8,513

Forecast of Power Demand in Georgia, million kW.h

Given that main sources covering power consumption in Georgia are the existing hydropower plants, the anticipated medium term parameters of power generated by hydropower plants are defined in low, average and high hydrological conditions based on high-factor mathematical model (considering rehabilitation effect). Obtained results are given in table 2.

FORECAST OF POWER GENERATION AT FUNCTIONING HYDROPOWER PLANTS, MILLION KW.H

									I able 2	
Year	Lo	w hydrology		Avera	age hydrolo	ogy	High hydrology			
	Winter	Summer	Total	Winter	Summer	Total	Winter	Summer	Total	
2011	2301	3649	5950	3068	4450	7518	4002.4	5073	9075.4	
2012	2317.3	3674.6	5991.9	3089.7	4481.3	7571	4016	5096	9112	
2013	2333.7	3701	6034.7	3111.6	4513.4	7265	4045	5144.8	9189.8	
2014	2350	3726.5	6076.5	3133.1	4544.5	7677.6	4072.9	5180	9252.9	
2015	2366.4	3753	6119.4	3155.2	4576.8	7732	4101.7	5216.6	9318.3	
2016	2382.7	4024.5	6408.2	3177	4908	8085	4130	5398.8	9528.8	
2017	2399	3804.8	6203.8	3199	4640	7839	4158.7	5243.2	9401.9	
2018	2415.4	3852.8	6268.2	3220.5	4698.5	7919	4186.6	5261.7	9448.3	
2019	2431.9	3856.9	6288.8	3242.5	4703.5	7946	4215.2	5267.3	9482.5	
2020	2448	3882	6330	3264.3	4734.7	7999	4243	5302	9545	

Under comparative analysis of the data provided in table 1 and table 2, anticipated deficit value between the power demand and its satisfaction by means of available water resources is determined. Dynamics of the deficit value change and the forecast are provided on fig. 1.

Fig. 1. Forecast of Georgian Power Deficit, million kW.h

Therefore the main principle for developing the optimal investment portfolio for energy projects is assumed to be the selection of those plants out of the full list [11] of the power plants suggested for the construction by Georgian Ministry of Energy, construction of which is realistic and their timely operation in autumn-winter period will satisfy the country's demand of power at a maximum level. Based on the above mentioned, 23 medium and large hydropower plants out of more than 50 hydropower plants to be constructed in Georgia in future were subject to technical and economic analysis. Partially

uncertain economic, technical and climate factors affecting the plants make the performance of full analysis impossible. Under such conditions, traditional mathematical aspects, theory of probability and mathematical statistics cannot consider various fuzzy aspects [9,10] which is why it is necessary to apply such a theoretic approach which will allow to make optimal decision by approximate modeling of subjective and partially uncertain information.

The objective set can be solved under the theory of "fuzzy logics" [10]. This theory allows to make optimal decision by processing incomplete information on any object and instruments based on fuzzy set integrity.

In order to solve this problem the software package Fuzzytech created based on mathematical modeling of linguistic betterment was applied and general algorithm of the investment portfolio [9] according to this package has the following form:

Fig. 2. Fuzzy Logical Diagram

Here, the combination of characteristics of the investment object can be presented in form of $X_1, ..., X_n$. {X} value system should be selected in such a way that it should fully evaluate the efficiency of the investment project. For the purposes of satisfying the requirement set forth, hydropower plants selected by us for the analysis were rated according to 10 characteristics, their values were determined based on relevant analysis and put into the table 3.

 $X_1, ..., X_{10}$ characteristics and functional dependence of the evaluation of Y investment project condition have the following form:

$$Y = \psi(X_1, X_2 ... X_{10})$$
(1)

where ψ is procedure containing the base of rules and connects $X_1, ..., X_{10}$ characteristics with complex characteristics of the evaluation of the Y investment project condition. In our case, based on mini-max principle [5], more than 10000 rules are generated for each investment object.

Ini	out]	[nformatio	n. Char	acteristics	of Hy	drop	ower	Plant	Candid	ates
	put	mormano	n, enar	acter istics	UI 11	arop	Units.	I Ittlit	Cullulu	aces

											Table 3
N	Hydropower plant names	Power generation, million kW.h	Specific value of 1 MW.h construction, \$million	Specific value of 1 MW construction, v \$million	Capacity use factor, %	Profitability at \$1	Construction duration, year	Coverage of winter deficit, \$	Effect of additional use of water	Social effect	Environmental impact
		X	X ₂	X ₃	X ₄	X ₅	X ₆	X _ 7	X ₈	X ₉	X 10
1	Paravani	425	0.29	1.6	62	0.187	3	4.67	0	Medium	Medium
2	Namakhvani	1677	0.6	2,22	42.5	0.94	6	20.4	0	High	High
3	Chorokhi	304	0.22	1.4	72	0.25	4	3.3	0	Low	Low
4	Mtkvari	200	0.325	1.51	53	0.93	5	2.5	0	"_"	"_"
5	Khobi	439	0.35	1.8	59.3	0.158	3	5.2	0	Medium	Medium
6	Tekhura	490	0.31	1.42	61.9	0.179	3	5.2	0	High	"_"
7	Khudoni	1500	0.47	1	24.5	0.119	5	17.1	1	High	High
8	Nenskra	1200	0.67	1.84	58	0.77	5	7.2	0	"_"	Medium
9	Alpana	356	0.3	1.5	57.7	0.183	3	3.3	0	Medium	Low
10	Stori	237	0.38	1.75	53.2	0.141	2	2	0	"_"	" - "
11	Oni	1556	0.426	2.35	63	0.128	5	15.9	0	High	High
12	Kheledula	427	0.355	1.79	57.5	0.148	3	3	0	Medium	Low
13	Zoti	144	0.55	2.22	46	0.099	5	1.5	0	Low	" - "
14	Khelvachauri	144	0.217	1.4	73	0.255	4	1.6	0	Medium	" - "
15	Tsdo	296	0.35	1.77	59.1	0.155	3	2.7	0	"_"	" _ "
16	Nakra	190	0.32	1.76	61	0.176	2.6	2.7	0	Low	"_"
17	Zestaponi	210	0.6	2.33	45	0.093	3	2.5	0	Medium	"_"
18	Bakhvi	260	0.267	1.55	63.3	0.21	3	3.1	0	Low	
19	Dariali	521	0.345	1.65	66	0.157	3	5.2	0	High	Medium
20	Magana	223	0.278	1.51	61.6	0.19	3	1.6	0	Low	Low
21	Lukhuna	185	0.275	1.7	70	0.2	4	2	0	"_"	" _ "
22	Cascade of river Paravani (Akhalkalaki, Abuli, Arakali)	278	0.287	1.76	69	0.198	2.5	4	0	"_"	"_"
23	Jejora	231	0.311	1.8	65	0.177	3	2.5	0	Low	Low

According to the established rules the impact of change of each $X_1, ..., X_{10}$ characteristic on Y value is determined. The mentioned dependence can be mathematically written in a following way:

 $\mathbf{r}(\mathbf{Y}) = \delta_i \mathbf{r}(\mathbf{X}_i), \qquad (2)$

where,

 $r(*) = \begin{cases} 1, \text{ if parameter (*) increases;} \\ -1, \text{ if parameter (*) decreases;} \end{cases}$

T 11 4

 $\delta_{i}(^{*}) = \begin{cases} 1, \text{ if increase of } X \text{ causes increase of } V; \\ -1, \text{ if increase of } X \text{ causes decrease of } V. \end{cases}$

According to the expression (2) and under expert evaluation, the matrix of the impact of the investment project characteristics versus the output information is obtained. The data are included in table 4.

										i able 4
Condition of the investment	X1	X2	X ₃	X4	X5	X ₆	X ₇	X ₈	X9	X10
project	Growt h	Growt h	Growt h	Growt h	Growt h	Growt h	Growt h	Growt h	Growt h	Growt h
Efficiency of the investment	Increa	Decrea	Decrea	Decrea	Increa	Increa	Decrea	Increa	Decrea	Decrea
project	ses	ses	ses	ses	ses	ses	ses	ses	ses	ses

Interactive block diagram (Fig. 3) of the course of fuzzy modeling process was drafted in order to process the presented input information (phasification) and obtain the final result (dephasification) with fuzzytech.

Fig. 3 Interactive Block Diagram of Fuzzy Modeling

Three alternative approaches for integrated research of the selection of the optimal investment portfolio are reviewed. The first – where all characteristics of the investment projects are presented by equal weight factors, the second – by prevalence of weight factors of economic characteristics, the third – by prevalence of weight factors of technical characteristics.

Certain scores were assigned to each investment project according to the weight factors of the input characteristics and according to the level of their impact on general characteristics under the calculations conducted on the basis of the software package Fuzzytech. The results are provided in table 5.

Three portfolios were selected based on the evaluation of the investment projects, potential to generate power in autumn-winter period by hydropower plants to be constructed,

provision of maximum decrease of the share of power totally generated by thermal power plants described in table 5. (see table 6.).

						Table 5
			Scores assigned			
Location	In case of equal impact of factors (alternative	In case of the preval technical character (alternative 2)	ence of ristics)	In case of the prevalence of economic characteristics (alternative 3)		
	Power plant	Score	Power plant	Score	Power plant	Score
1	Khudoni	6.14	Oni	6.35	Chorokhi	6.13
2	Khelvachauri	5.93	Khudoni	6.31	Khelvachauri	6.12
3	Chorokhi	5.89	Khelvachauri	5.67	Lukhuna	6.1
4	Oni	5.79	Lukhuna	5.63	Bakhvi	6.09
5	Bakhvi	5.75	Chorokhi	5.58	Khudoni	6.01
6	Tekhura	5.64	Tekhura	5.38	Jejora	5.86
7	Jejora	5.63	Bakhvi	5.34	Magana	5.8
8	Magana	5.35	Jejora	5.33	Tekhura	5.79
9	Dariali	5.34	Nenskra	5.18	Paravni cascade	5.77
10	River Paravani cascade	5.32	Dariali	5.16	Alpana	5.69
11	Paravani HPP	5.31	Namakhvani	5.11	Dariali	5.56
12	Alpana	5.2	Khobi	4.99	Paravani HPP	5.55
13	Lukhuna	5.09	Paravani HPP	4.98	Nakra	5.43
			River Paravani			
14	Khobi	5.08	cascade	4.86	Oni	5.34
15	Nakra	5.05	Magana	4.8	Kheledula	5.25
16	Nenskra	4.96	Alpana	4.79	Khobi	5.24
17	Kheledula	4.96	Kheledula	4.59	Tsdo	5.22
18	Tsdo	4.8	Nakra	4.58	Stori	4.86
19	Namakhvani	4.55	Tsdo	4.3	Nenskra	4.76
20	Stori	4.51	Stori	4.1	Mtkvari	4.25
21	Mtkvari	3.95	Zestaponi	3.72	Namakhvani	4.16
22	Zestaponi	3.91	Zoti	3.71	Zoti	3.93
23	Zoti	3.83	Mtkvari	3.7	Zestaponi	3.86

Research Results

The research run under the above method for the selection of the optimal investment showed that from three alternatives provided in table 6 the alternative 3 satisfies the investment portfolio requirements most of all.

Investment Portforlios

Table 6

Portfolio	Power generation, million kW.h	Specific value of 1 MW.h construction, \$million	Specific value of 1 MW construction, Smillion	Capacity use factor, %	Profitability, %	Coverage of winter deficit, %	Installed capacity, MW	Investment, \$million
1	7102	0.362	1.49	46.6	0.148	77.37	1737	2573.5
2	8068	0.48	1.67	40	0.112	83.5	2309.4	3861.9
3	7825	0.36	1.5	48	0.15	83.07	1879.6	2828.2

Optimal Investment Portfolio

]	Table 7
	ЧРР	Installed capacity, MW	Power generation, million kW.h	Construction cost, \$ million.	Specific value of 1 MW construction	Generation in winter, million kW.h	Generation in summer, million kW.h	Capacity use factor, %	Profitability, %	Year of putting HHP into operation	Coverage of winter deficit, %
1	Paravani	78	425	125	0.29	150	275	62	0.187	2014	4.67
2	Chorokhi	48	304	67	0.22	105	199	72	0.25	2017	3.3
3	Tekhura	105	490	150	0.31	166	324	61.9	0.179	2015	5.2
4	Khobi	86	439	155	0.35	166	273	59.3	0.158	2018	5.2
5	Khudoni	700	1500	700	0.47	550	950	24.5	0.119	2018	17.1
6	Alpana	70	356	105	0.3	106	250	57.7	0.183	2016	3.3
7	Bakhvi	45	260	69.6	0.267	101	159	63.3	0.21	2017	3.1
8	Dariali	109	521	180	0.345	166	355	66	0.157	2020	5.2
9	Lukhuna	30	185	51	0.275	65	120	70	0.2	2016	2
10	River Paravani cascade	45.4	278	80	0.287	126	152	69	0.198	2015	4
11	Oni	282	1556	664	0.426	511	1045	63	0.128	2019	15.9
12	Magana	41.3	223	62	0.278	53	170	61.6	0.19	2017	1.6
13	Jejora	40	231	72	0.311	81	150	65	0.177	2016	2.5
14	Nakra	35	190	61.6	0.32	86	104	61	0.176	2016	2.7
15	xKhlvachauri	22.4	144	31.3	0.217	52	93	73	0.255	2017	1.6
16	Tsdo	57.8	296	102.7	0.35	86	210	59.1	0.155	2020	2.7
17	Kheledula	84.7	427	152	0.355	97	330	57.5	0.15	2019	3

Fig. 4. Forecast of Autumn-Winter Power Balance of Georgia

Fig. 5. Forecast of Annual Autumn-Winter Power Balance of Georgia

As a result of the research conducted:

- 1. method of selecting the optimal investment portfolio for providing Georgian power safety within the medium term is elaborated;
- 2. optimal porfolio of the investment projects to be implemented in Georgian energy sector is selected;
- 3. estimated rates of deficit power during autumn-winter period are specified based on comparative analysis of the power demand in Georgia and anticipated medium-term patameters, the ways to reduce deficit by increasing the generation of power obtained as a result of putting hydropower plants identified under the selected optimal investment portfolio into the operation within the established terms are shown.

REFERENCES

- 1. ჯაფარიძე დ., გიორგიშვილი ნ. საქართველოს ენერგეტიკული რესურსების წარმოების საშუალოვადიანი პროგნოზირება//ენერგია. 2009. №3(51).
- 2. ჯაფარიძე დ., მაღრაძე თ.. საქართველოში ელექტროენერგიის მოთხოვნის საშუალოვადიანი პროგნოზირება მრავალფაქტორული მოდელის გამოყენებით// საქართველოს ეკონომიკა. 2009. №3.
- 3. ჯაფარიძე დ., მაღრაძე თ. საქართველოში ელექტროენერგიის წარმოების საშუალოვადიანი პროგნოზირება//საქართველოს ეკონომიკა. 2009. №7-8.
- 4. ქვეყნის ენერგეტიკული ბალანსის საშუალოვადიანი პროგნოზირების ალგორითმის შემუშავება, ამის საფუძველზე საქართველოს ენერგეტიკული საშუალოვადიანი პროგნოზული ბალანსის შედგენა. სტუ-ს შიგა საგრანტო პროგრამის შესრულების ანგარიში. თბილისი. 2010.
- 5. ჯაფარიძე დ. საინვესტიციო პროექტების განხორციელება ენერგეტიკაში. თბილისი:სტუ. 2009.
- 6. ჯაფარიძე დ., გაჩეჩილაძე ზ. ენერგეტიკულ საწარმოებში განხორციელებული ინვესტიციების ეკონომიკური ეფექტურობის მაჩვენებლის განსაზღვრა//საქართველოს ეკონომიკა. 2010. №3
- 7. ჯაფარიძე დ., გაჩეჩილაძე ზ. ენერგოსაწარმოების მშენებლობაზე განხორციელებული კერძო ინვესტიციების ეკონომიკური ეფექტიანობის შეფასება//საქართველოს ეკონომიკა. 2010. №7.
- ჯაფარიმე ღ., გაჩეჩილამე ზ., გიორგიშვილი ნ. საქართველოში ელექტროენერგიის წარმოება, როგორც ეკონომიკური კრიზისის შემცირების ერთ-ერთი ფაქტორი//სოციალური ეკონომიკა. სპეციალური გამოშვება. 2011. №1(13).

9. Young Fang. Fuzzy Portfolio Optimization. Springer, Berlin. 2008.

10. Cornelius T. Leondes. Fuzzy logic and Expert System Applications. Academic press, Los Angeles. 1998

11. <u>www.minenergy.gov.ge</u>