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The primary problem of unsteady flows' study is calculation of hydraulic losses. A formula for 

calculation of  hydraulic losses in unsteady pressure motion has been presented in the present work. 

To evaluate each term of the formula and perform calculation of energy loss it is necessary to study 

structural changes running in unsteady flows. The present paper presents the results of investigation 

of unsteady laminar flow of viscous fluid in a cylindrical pipe of circular cross-section. Integrating the 

differential equation of axial-symmetric pressure flow of viscous fluid regularities of hydraulic 

parameters change in general boundary and initial conditions have been obtained. On the basis of 

general solutions fomulae for calculation of hydraudynamic parameters of unsteady pressure flow 

when the pressure gradient is changed instanteneously.  Computer-aided experimental study graphs 

were plotted for instanteneous  change of velocity, shearing stresses, average velocity of the flow, 

coefficients of momentum and kinetic energy. According to the results of calculations conclusions 
have been drawn on the nature of structural changes and formation of hydraulic losses. 

 

 

Losses of energy occurring in cylindrical channels of circular cross-section in case of non-

stationary flow is calculated by the following formula 
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where   is the factor of kinetic momentum change 

0
2

A

2

AV

dAu

0


 :      (2) 

Eq. (1) can be represented as 
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where 0hw  is the loss of energy originated in uniform flow to which tends the given non-
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is the inertia head conditioned by velocity diagram deformation[3]. 

Thus, the meaning of energy loss is not the same in cases of  non-uniform non-stationary 

and stationary flow. During non-stationary flow a part of the specific energy of the fluid is 

spent on overcoming friction forces, and transforming to heat energy is absorbed by 

ambient medium and is not restored, as for the other part - it is used on overcoming the 

fluid inertia and velocity diagram deformation, which is restored with time.  

In case of non-stationary flow all parameters of  the flow, therefore, including energy loss 

depend on time and can be determined. If it is assumed that non-stationary flow is 

continuation of quasi-stationary flow which suppose parabolic distribution of velocities [3], 

then we have 
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Eq.  (1) now can be expresses as   

dt

dv

g

l33,1
l

x

p

g

1

gr

l2

0

0 












     (4) 

In the result of non-stationary flow study on the basis of quasi-stationary model a formula 

was derived in the form of transfer function  for calculation of shear stresses occurring on 

the channel fixed wall [3]. However, as it was mentioned above the quasi-stationary flow 

model is not correctly characterized the real behaviour of flow and energy losses initiation 

mechanism [1]. 

In non-uniform non stationary flow the occurring energy loss should be calculated by 

Eq.(1) for which it is necessary to know regularity of velocity non-uniform distribution in 

the flow section which enables to obtain the variation function of energy losses. 

Often in pressure systems due to pressure gradient 
x

P




change the flow stationary regime is 

violated causing time-dependent change in hydromechanical parameters. In consequence 

of pressure gradient change under influence of friction and inertia varying forces non-

stationary flow of fluid occurs. Research of these phenomena are of great practical and 

theoretical interest. 

Investigation of non-stationary laminar flow in a cylindrical pipe of circular cross-section is 

reduced to integration of  Navier-Stokes equations which in case of axially-symmetrical 

flow in the cylindrical coordinate system is given by [2,5,6] 
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where U is a velocity component along the axis of the cylinder and all other components 

are equal to zero. For an incompressible fluid from the continuity  equation of it follows 
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which means that the velocity component along the axis of the cylinder is not dependent on 

x  coordinate. 

From the last two equation it follows that the pressure function depends only  on x  

coordinate and t  time. Therefore for any fixed section )constx(   pressure change will be 

dependent on time only, hence 
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To integrate Eq. (5) the initial and boundary conditions also are given. As an initial 

condition the function of velocity distribution in the flow section of the pipe is given at the 

starting moment. Let us now consider the general case when in  0x   section of the pipe 

velocities are distributed according to an arbitrary function, that is  rU 0x  . It is 

assumed that viscous fluid adheres to the wall of the pipe, hence, it is immobile and 

consequently 0)t,R(U  , where R is the radius of the pipe. 

Introducing dimensionless values and coordinates 



A. Sarukhanyan                                                                                                 Energyonline №1(7), 2014 

 

 3 

;PUP;t
U

R
t

;Rrr

;Rxx;UUU

0
2

0

0

00












 

where  t,0UlimU
t 

  , Eq. (5) now is given by 
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where 



  RU

Re  is the Reynolds number. 

The obtained initial and boundary conditions of the differential equation are, respectively 
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The solution of Eq.(7) is sought for  
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in the form of an infinite series where  tCk  unknown factors are functions which take into 

account velocity deviations from velocities of stationary flow, )rq(J k0 is the Bessel first kind 

zero order function, kq  are roots of )rq(J k0 =0 equation. 

The general solution of the problem is obtained as 
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Accelerating friction stresses between viscous fluid layers are determined by Newton’s law 

dr

dU
 :      (12) 

Therefore the regularity of sear stresses change in case of non-stationary laminar flow is 

expresses by 
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General solutions (10) and (14)  of the problem enable obtaining solutions for particular 

cases. Having the regularity of velocity distribution the average velocity in the flow section 

can be found 
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To determine the momentum variation coefficient using Eqs.(10) and (15) we have 
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Employing Parseval’s equation [4] for orthogonal series the value of the last integral is 

determined 
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In case of pressure variation constant ;const
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when t  the non-stationary flow becomes stationary. From Eq. (18) the regularity of 

velocity distribution in case of stationary flow is obtained. Making t  boundary passage 

we obtain 
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Here 
x

P

4

Re
U




  is the maximum velocity in case of stationary flow, that is velocity in the 

centre of the pipe. 

Thus, regardless of the initial pattern of velocity distribution in a cylindrical pipe of 

circular cross-section, velocity distribution regularity of originating non-stationary flow 

velocity distribution in case of pressure variation constant value when t  tends to the 

known second-order parabola law. 
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Let us now examine  accelerating flow of real fluid in a pipe of constant diameter, when the 

fluid and the walls of the pipe are not deformable and at terminal points on l  length of the 

pipe pressure constant values  21 PandP  are present. At the initial moment the fluid is in 

the state of rest -   ,0r  , therefore   0tCk   and   constP
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Substituting values of  tCk  and  tf  functions into Eq.(11) we get 
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Having values of  tAk  coefficients we can determine  the regularity of velocity variation 
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The average velocity of the section will be 
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From Eqs.(12) and (22) the law of shear stresses variation is obtained 
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For the momentum variation factor according to Eq.(17) we have 
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The coefficient of velocities non-uniform distribution is calculated by 
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From the above equation it follows that when 0t  , 1 , 1  and t , 3/4 , 

2 , which corresponds to the stationary regime. 

Values of  t,rU ,  tV ,  t ,  t  functions for different values of  Reynolds number have 

been computed and plotted. Below are graphs for 2000,1500,100,1Re   Reynolds number 

and different time values. 
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Fig. 1. Time-dependent velocity change when   ,1Re  ( 824.0t st ) 
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Fig. 2. Time-dependent velocity change when  ,100Re   ( 407.81t st ) 
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Fig. 3. Time-dependent velocity change when ,1500Re  ( 1.1221t st ) 
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Fig. 4. Time-dependent velocity change when ,2000Re  ( 13.1628t st ) 

 

It follows from the above graphs that for small Reynolds number non-stationary flow 

quickly tends the stationary flow regime. To each graph in case of stationary flow 

maximum values of velocity in the centre of the pipe are attached. Time values also are 

given, during to which in case of stationary flow the velocity in the pipe centre equals 0.99 

part of maximum velocity.  

From the graph representing velocity change it is not difficult to arrive at a conclusion that 

the fluid in state of rest begins moving in close to pipe walls layers. A boundary layer is 

developed gradually spreading its influence to the pipe centre. Due to viscous forces  the 

velocity field gradually is spread through the entire section of the pipe. 

 

 

Fig. 5.  t  coefficient variation when 2000,1500,1000,100,1Re   

 

Fig. 5 represents momentum coefficient    variation graphs for Reynolds number 

different values. Variation boundaries of graphs are 
3

4
1  . In case of small values of 

Reynolds number   coefficient quickly tends to the value of stationary regime - 4/3. So 

much is the Reynolds number as much is delay of    coefficient tendency to its stationary 

regime value. Attached to the represented graphs for each value of Reynolds number time 

durations are calculated in which   coefficient becomes equal to st99.0 . 

Velocity non-uniform distribution coefficient   is calculated by 
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Fig. 6 represents computed values of   coefficient for various Reynolds numbers. To each 

graph time durations are given in which occurs stabilisation.  

 

 

Fig. 6. Variation of  t  coefficient when 2000,1500,1000,100,1Re   

 

Fig. 6 shows variation of the average velocity for four values of the Reynolds number 

( 2000,1500,100,1Re  ). For small values of the Reynolds number non-stationary flow 

quickly tends to stationary regime of the flow (curve 1). For each curve velocities and 

duration in which the velocity in the centre of the pipe becomes equal to 0,99 part of the 

maximum velocity have been calculated. 

 

 

Fig. 7. Variation of the average velocity of the section when 2000,1500,1000,100,1Re   

 

Having of the average velocity and momentum coefficient variation regularities graphs of 

energy loss in case of  non-stationary flow for the Reynolds numbers 2000,1500,100,1Re   

have been plotted (Fig. 8). 
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Fig. 8. Variation of energy loss when 2000,1500,1000,100,1Re   

 

The plotted graphs show that in non-stationary flow energy loss and its separate elements 

do not undergo essential change and the process quickly tends to a stationary regime as 

shown in Fig.8. With increase of the Reynolds number in case of stationary and non-

stationary between occurring energy losses significant difference is developed and for 

becoming stationary the process takes long-time duration. To evaluate individual elements 

of energy losses occurring in the non-stationary flow it is necessary to plot their variation 

graphs and determine boundaries of their relation. 

 

Fig. 9. Variation of relation of individual elements of energy loss  when  

2000,1500,1000,100,1Re   

 

Fig. 9 shows variation of inertial members relation arising due to velocity diagram change 

and velocity change in case of one-dimensional flow for 2000,1500,100,1Re   reynolds 

number. From the plotted graphs it follows that the values of 
i2

i1

h

h
 relation in case of 

accelerating non-stationary flow in the initial moment of flow are large which means 

significant change of velocity gradient and uniformity of velocity field. Then occurs 

deformation of the velocity diagram because of which the gradient of velocity variation 

decreases, velocity deformation increases, and 
i2

i1

h

h
relation tends to 19. After that this 
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relation gradually increases assymptotically up to 26.8. These boundaries have been 

undergone computerized verification. The moment non-stationary flow starts 
i2

i1

h

h
relation 

is  57.2, then it decreases to 19.3 which with time tends to 26.1. 

Fig. 10 to 13 show regularities of variation of friction stresses developed between layers of 

the fluid obtained in accordance with the velocity field for different values of the Reynolds 

number.  

 

 

Fig. 10. Regularity of shear stresses variation when ,1Re  ( 824.0t st ) 

 

 

 

Fig. 11. Regularity of shear stresses variation when ,100Re  ( 407.81t st ) 
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Fig. 12. Regularity of shear stresses variation when ,1500Re  ( 1.1221t st ) 

 

 

Fig. 13. Regularity of shear stresses variation when ,2000Re  ( 13.1628t st ) 

 

Equivalent to the variation of the velocity field also vary shear stresses and accordingly 

vary shear stresses arising near fixed wall. Therefore, energy losses will occur due to 

friction forces developed by friction between the fluid and fixed wall. These losses 

depending on the change of shear stresses similarly will have variable nature. energy losses 

near a fixed wall developed by shear stresses expresses by friction stresses developed near 

the fixed wall will [2, 27] be given as 

gd

l4

gR

l
h 00

w








      (27) 

Having the regularity of variation of shear stress (24) we can derive the law of variation of 

energy losses developed only near-wall shear stresses. Fig.14 illustrates variation of energy 

losses developed by shear stresses which appear near the wall for different values of the 

Reynolds number. Curves have been plotted using computer technology. 
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Fig. 14. Regularities of energy losses variation developed near-wall shear stresses when 

2000,1500,100,1Re   

 

The obtained graphs shape and character are equivalent to  curves reflecting energy 

losses developed in non-stationary flow (see Fig.8). To make quantitative comparisons the 

graph of these two losses relation variation has been drawn (Fig. 15).  

 

Fig. 15 Variation of energy losses relation developed by energy loss and near-wall shear stresses 

 

 

Conclusions 

a) In non-stationary flow energy losses strictly differ from ones developed only friction 

stresses arising near fixed wall. 

b) In case of small values of the  Reynolds number practically energy losses do not differ 

from energy losses developed by near-wall friction stresses. 

c)  In non-stationary flow the sum of energy losses' individual elements tends to be equal 

to energy losses developed by friction stresses arising near the wall. 
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