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Alongshore waves are dominant in open river and maritime canals. For water area, from one side 

limited by arbitrarily sloped shore endlessly running deep into the sea, they were studied by Stocks, but 

due to significant mathematic difficulties for total depth canals the amount of accurate solutions is 

limited by just some private cases which are hardly applicable in practical use. 

Some results of approximate solution of the problem about propagation of alongshore waves laying 

over the stationary flow in trapezoid canal are presented. The solution is based on the application of 

direct Galorkin-Kantorovich method in three-dimension linear equations for wave hydromechanics 

written in cylindrical coordinate system. The obtained solutions maintain the three-dimension 

structure of the waves over the shore slope and lead to the results easily applied in the design 
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Longitudinal waves are the dominating ones in open maritime and navigation river 

channels. For a area having only one side bounded by an arbitrarily sloping wall, these 

waves were studied by Stokes [1], but because of great mathematical difficulties for 

channels of finite depth the quantity of exact solutions is limited only to a few particular 

cases [1] - [4] which are difficult for practical use.  

Below we present some of our results of approximate solution of the problem on 

propagation of longitudinal waves imposed on a stationary flow in a trapezoidal channel.  

The solution is based on the application of the Galerkin-Kantorovich direct method [5] to 

three-dimensional linear equations of wave hydromechanics written in a cylindrical system 

of coordinates x,r,, (see Fig. 1) 

 

 

Fig. 1. Design diagram of alongshore waves in trapezoidal channel 
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where x  is a longitudinal coordinate; r  is the radius vector taking its origin on the line of 

intersection of the bank slope with the channel bottom and acting in the sector bounded by 

the vertical z-axis and the bank slope 0 towards the horizon;  is a polar angle that varies 

from =0 on the z-axis to 0 on the bank slope plane. The following expressions were 

obtained for the velocity potential ( ) and vertical deviations of the free surface ( ) of 

longitudinal waves:  
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where U0 is the stationary flow velocity; h0 and  a0 are respectively the flow depth and the 

wave amplitude given in the rectangular part of the channel;  /2  is the wave 

disturbance frequency;   is the period of time;  /2k  is the wave number;  is the 

length of a longitudinal wave; the signs " " correspond to the propagation of counter-flow 

waves and waves whose direction coincides with that of a flow; m is the so-called transverse 

wave number on which depends the wave surface configuration crosswise the channel. In 

particular, if in a channel there propagate relatively short waves for which the number m is 

defined by the asymptotic relation  

                                                      
2

1

0

0

2

1

cos

kh
m 













 ,                                                             (3) 

then the free water surface acquires the mode of standing wave oscillations. These 

oscillations have longitudinal stationary nodal lines, the number of which over  the bank 

slope is calculated by the integer part of the number n defined by the equality 
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   For all values of n we use the limit dispersion relation  
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Whereas the connection between the wave amplitudes on the bank line a and above the 

bank slope base a0 is expressed by the relation 
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according to which a is always larger than a0 and much exceeds a0 in the presence of short 

waves, i.e. for large kh0. In that case, the equation of free surface near the bank 

asymptotically leads to the results calculated by the Stokes relation.  Also, if the wave 

steepness on the shore line is  
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where  718.2e   is the Neper number, then above the shoreline waves will wet the bank 

slope only with destroyed crests. Graphic picture (7) is provided in Fig. 2. 

 

Fig. 2. Limit steepness of the wave crest above the shoreline of trapezoidal  channel 

 

According to Fig.1. Even for very steep coast slope, in particular, for the slope with an 

angle dipping to the horizon 0 = 60
о
,
 
the maximum steepness of the alongshore waves at 

the shoreline does not exceed  2.0
a



. In larger alongshore wave steepness, above the 

shoreline, will wet the slope of the slope at 60° only with broken ridges. 

Using these relations and estimating the static stability of the bank slope of a 

trapezoidal channel built of loose soil, we can come to a conclusion that by washing-out the 

bank slope of the channel long waves give a concave shape (Fig. 3), whereas relatively short 

longitudinal waves give it a convex shape (sea Fig.4).  
 

 

Fig. 3. A typical outline of the washed-out coastal slope by the long alongshore waves 

1- initial (designed) contour of the coastal slope; 2- contour of the washed-out slope; 

3- channel invert 
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Fig. 4. Deformation contour of a coastal slope of one of the sea channel 

1 – Design contour of the coastal slope; 2 – washed-out coastal slope; 3 – surface of the water in the 

channel; 4 – designed channel invert; 5 – deposited soil; designed water depth; h - water depth after 

wash-out of the slope; y – transverse coordinates, counted from a vertical  where there is no wash-

out of the coastal slope (hw=1,3 m); 
'
0m  - laying of a slope of washed-out coast. 

 

 

      Calculation is conducted by the following initial data:  an initial depth of a channel 

h0=5м; designed sense of ratio of inclination m0=cotθ0 =3.5; average particle size of channel 

soil  

d = 0.510
-4

 m; relative density of water and soil particles in suspension state =1 ton/m
3
 и  

'=1.6 ton/m
3
;  length and amplitude of an alongshore wave = 4.0 m  и a=0.35 m. The 

results of the calculation are in accordance with data of full-scale monitoring of wash-out 

of the coasts of seaport channel. 
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